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Abstract

Different studies have proposedmethods formining fuzzy association rules fromquantitative data, where themembership functions
were assumed to be known in advance. However, it is not an easy task to know a priori the most appropriate fuzzy sets that cover the
domains of quantitative attributes for mining fuzzy association rules. This paper thus presents a new fuzzy data-mining algorithm for
extracting both fuzzy association rules and membership functions by means of a genetic learning of the membership functions and
a basic method for mining fuzzy association rules. It is based on the 2-tuples linguistic representation model allowing us to adjust
the context associated to the linguistic term membership functions. Experimental results show the effectiveness of the framework.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Data mining (DM) is the process for automatic discovery of high level knowledge by obtaining information from
real data. Discovering association rules is one of the several DM techniques described in the literature [15].

Association rules are used to represent and identify dependencies between items in a database [36]. These are an
expression of the type X → Y , where X and Y are sets of items and X ∩ Y = ∅. It means that if all the items in X exist
in a transaction then all the items in Y are also in the transaction with a high probability, and X and Y should not have
a common item [1,2]. Many previous studies focused on databases with binary values; however, the data in real-world
applications usually consist of quantitative values. Designing DM algorithms, able to deal with various types of data,
presents a challenge to workers in this research field.

Fuzzy set theory has been usedmore andmore frequently in intelligent systems because of its simplicity and similarity
to human reasoning [23]. The use of fuzzy sets to describe association between data extends the types of relationships
that may be represented, facilitates the interpretation of rules in linguistic terms, and avoids unnatural boundaries in
the partitioning of the attribute domains [9–11,22,34].

Different studies have proposed methods for mining fuzzy association rules from quantitative data [20,21,28,29,33],
where the membership functions (MFs) were assumed to be known in advance. The given MFs may have a critical
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Fig. 1. Scheme for discovering both useful fuzzy association rules and suitable MFs.

influence on the final mining results. For this reason, some approaches have also achieved a learning or tuning of the
MFs [14,18,19,25–27,35].

Recently, a new linguistic rule representation model has been proposed to perform a genetic lateral tuning of MFs
[3]. This new approach is based on the 2-tuples linguistic representation [17], that allows the symbolic translation of
a linguistic term by considering only one parameter. In this way, two main objectives were achieved: to tune MFs by
maintaining a high covering degree of the data, and to reduce the search space with respect to the classic tuning [6]
(usually considering three parameters in the case of triangular MFs), in order to easily obtain optimal models.

The automatic definition of fuzzy systems can be considered as an optimization or search process and nowadays
evolutionary algorithms, particularly genetic algorithms (GAs), are considered as the better known and used global
search technique. The genetic coding that GAs use allow them to include prior knowledge and to use it for leading
the search up. For this reason, GAs have been successfully applied to learn and to tune fuzzy systems in the last years
[5,6,16].

Based on the 2-tuples linguistic representation model, in this paper we present a new fuzzy DM algorithm for
extracting both fuzzy association rules and MFs from quantitative transactions by means of a genetic learning of the
MFs and the use of a basic method for mining the fuzzy association rules. In this way, the search space reduction
provided by the 2-tuples linguistic representation helps the genetic search technique to obtain more suitable MFs.
Moreover, this way to work allows us to learn the most adequate context [7,8] for each fuzzy partition, which is
necessary in different contextual situations with the aim of getting high quality fuzzy association rules.

The scheme considered for discovering both useful fuzzy association rules and suitableMFs from quantitative values
is composed of two stages (see Fig. 1):

(1) A genetic process to learn the MFs.
(2) A method to mine fuzzy association rules. The method presented in [20] will be considered for this task as a first

approach.

We will develop this approach in this paper. We will propose a genetic learning process for getting the MFs together
with a mining process for getting the fuzzy association rules.

We will also present an experimental study for showing the behaviour of the proposed approach using a public
database, FAM95. 1 We will develop a double study, first, we will show the results obtained by our proposal, comparing
it with the classical one using the uniform partition and the well-known approach presented by Hong et al. [19], which
also performs a genetic learning of the MFs. Second, we will revise the fuzzy association rules obtained with our
approach via support and confidence and we will analyse the complexity and scalability of the proposed approach.

To do that, the paper is arranged as follows. The next section describes the linguistic rule representation model based
on the linguistic 2-tuples. Section 3 details the genetic learning components proposed to obtain the MFs. Section 4
describes the proposed mining process. Section 5 shows the results of the proposed mining algorithm applied over a
real-world database. Finally, Section 6 points out some concluding remarks.

1 This database was obtained from the UCLA Statistics Data Sets Archive website http://www.stat.ucla.edu/data/fpp.
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2. Preliminaries: the 2-tuples linguistic representation

The 2-tuples linguistic representation scheme presented in [17], introduces a newmodel for rule representation based
on the concept of symbolic translation (the lateral displacement of a linguistic term).

The symbolic translation of a linguistic term is a number within the interval [−0.5, 0.5) that expresses the domain
of a linguistic term when it is moving between its two lateral linguistic term. Let us consider a set of linguistic terms S
representing a fuzzy partition. Formally, we have the pair,

(si , �i ), si ∈ S, �i ∈ [−0.5, 0.5)

Fig. 2 depicts the symbolic translation of a linguistic term represented by the pair (S2, −0.3), considering a set S with
five linguistic terms represented by their ordinal values ({S0, S1, S2, S3, S4}).

In [17], both the 2-tuples linguistic representation model and the needed elements for linguistic information com-
parison and aggregation are presented and applied to the decision making framework. In [3], a new rule representation
model has been presented based on these concepts to perform a tuning of complex linguistic fuzzy models. In this
work, we extend its use for fuzzy association rule representation. Below we present this approach considering a simple
mining problem.

Let us consider a simple problem with two items (age and weight) and three linguistic terms with their associated
MFs (see Fig. 3). Based on this definition, an example of classic fuzzy association rule and 2-tuples fuzzy linguistic
representation-based rule is:

Classic Fuzzy Association Rule:
If Age is Middle thenWeight is High.

Rule with 2-Tuples Fuzzy Linguistic Representation:
If Age is (Middle, 0.3) then Weight is (High,−0.1).

(s2, - 0.3)

α = -0.3

0.5- 0.5

0.5- 0.5

0.5- 0.5

0.5- 0.5

0.5- 0.5

0 1 2 3 4

- 0.3

1.7

(s2, -0.3)

s0 s1 s2 s3 s4

0.5 1-0.5-1

s0 s1 s2 s3 s4

Fig. 2. Symbolic translation of a linguistic term and lateral displacement of the involved MF.
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Fig. 3. Items and linguistic terms in a simple problem.

This proposal decreases the size of the tuning search space, since the three parameters usually considered per
linguistic term [6] are reduced to only one symbolic translation parameter. Moreover, from the point of view of
interpretability:

• the original shapes of the MFs are maintained (in our case triangular and symmetrical), by laterally changing the
location of their supports,

• the lateral variation of the involved MFs is restricted to a short interval, ensuring overlapping between two adjacent
MFs to some degree but preventing their vertex points from crossing, and

• the 2-tuples representation-based linguistic terms can be interpreted with respect to the initial ones.

Analysed from the rule interpretability point of view, we could interpret the previous 2-tuples linguistic representation-
based rule in the following way:

If Age is (higher than Middle)
thenWeight is (a bit smaller than High).

3. Genetic learning process components to obtain the MFs

In this paper, we will consider the use of GAs to design the proposed learning method of the MFs. A good genetic
model is the CHC genetic model [12]. The CHC algorithm is a GA that presents a good trade-off between exploration
and exploitation, being a good choice in problems with complex search spaces.

In the following, the components needed to design this GA are explained. They are:

• CHC genetic model.
• MFs codification and initial gene pool.
• Chromosome evaluation.
• Crossover operator.
• Restart approach.

3.1. CHC genetic model

We will consider a population-based selection approach, by using the CHC genetic model [12] in order to perform
an adequate global search. The genetic model of CHCmakes use of a ‘population-based selection’ approach. N parents
and their corresponding offspring compete to select the best N individuals to take part of the next population. The CHC
approach makes use of an incest prevention mechanism and a restarting process to provoke diversity in the population,
instead of the well-known mutation operator.

This incest prevention mechanism will be considered in order to apply the crossover operator, i.e., two parents are
crossed if their hamming distance divided by 2 is over a predetermined threshold, L. Since wewill consider a real coding
scheme, we have to transform each gene considering a Gray Code with a fixed number of bits per gene (BITSGENE)
determined by the expert. In this way, the threshold value is initialized as

L = (#Genes ∗ BITSGENE)/4.0
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Fig. 4. Scheme of CHC.

where #Genes is the number of genes in the chromosome (for more information, see [13]). Following the original CHC
scheme, L is decremented by one when there is no new individuals in the population in one generation. In order to
make this procedure independent of #Genes and BITSGENE, in our case, L will be decremented by a �% of its initial
value (being � determined by the user, usually 10%). The algorithm restarts when L is below zero.

A scheme of this algorithm is shown in Fig. 4.

3.2. MFs codification and initial gene pool

A real coding scheme is considered, i.e., the real parameters are the GA representation units (genes). Each chromo-
some is a vector of real numbers with size n ∗m (n items with m linguistic terms per item) in which the displacements
of the different linguistic terms are coded for each item. Then, a chromosome has the following form (where each gene
is the displacement value of the corresponding linguistic term):

(c11, . . . , c1m, c21, . . . , c2m, . . . , cn1, . . . , cnm)

Fig. 5 graphically depicts an example of correspondence between a chromosome and its associated MFs. Notice that,
the three parameters usually considered per linguistic term (in the case of triangular MFs) are reduced to only one
parameter.

To make use of the available information, the initial MFs obtained from expert knowledge are included in the
population as an initial solution. To do so, the initial pool is obtained with the first individual having all genes with
value ‘0.0’, and the remaining individuals generated at random in [−0.5, 0.5).

3.3. Chromosome evaluation

To evaluate a determined chromosome we will use the fitness functions defined in [18]. The fitness value of a
chromosome Cq is defined as

fitness(Cq ) =
∑

x∈L1
fuzzy_support(x)

suitability(Cq )

where L1 is the set of large 1-itemsets obtained by using the set of MFs in Cq , fuzzy_support(x) is the fuzzy support
of the 1-itemset x from the given transaction database [24], and suitability(Cq ) represents the shape suitability of the
MFs from Cq . The suitability of the set of MFs in a chromosome Cq is defined as

suitability(Cq ) =
n∑

k=1

[overlap_factor(Cqk) + coverage_factor(Cqk)]

where n is number of items, overlap_factor(Cqk) is the overlap factor of the MFs for an item Ik in the chromosome
Cq , and coverage_factor(Cqk) is the coverage factor of the MFs for an item Ik in the chromosome Cq .
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Fig. 5. Example of coding scheme.

The overlap factor represents the overlap ratio of the MFs for an item Ik in the chromosome Cq . The overlap ratio
of two MFs Ri and R j (i < j) is defined as the overlap length divided by the minimum of the right span of Ri (right
extreme minus vertex) and the left span of R j (vertex minus left extreme). If the overlap length is larger than the
minimum of the above two spans, then these two MFs are thought of as a little redundant. Appropriate punishment
must then be considered in this case. Thus, the overlap factor of the MFs for an item Ik in the chromosome Cq is
defined as

overlap_factor(Cqk) =
m∑
i=1

m∑
j=i+1

[
max

(
overlap(Ri , R j )

min(spanRRi , spanLR j
)
, 1

)
− 1

]

where overlap(Ri , R j ) is the overlap length of Ri and R j , spanRRi is the right span of Ri , spanLR j
is the left span of

R j and m is the number of MFs for Ik . Notice that, in our case spanRRi and spanRR j
are the same size because the

displacements of the MFs are performed on the uniform partition and the original shapes of the MFs are maintained
(triangular and symmetrical).

The coverage factor represents the coverage ratio of the MFs for an item Ik in the chromosome Cq . The coverage
ratio of MFs for an item Ik is defined as the coverage range of the functions divided by the maximum quantity of that
item in the transactions. The more the coverage ratio is, the better the derived MFs are. Thus, the coverage factor of
the MFs for an item Ik in the chromosome Cq is defined as

coverage_factor(Cqk) = 1

range(R1, . . . , Rm)

max(Ik)

where range(R1, R2, . . . , Rm) is the coverage range of the MFs and max(Ik) is the maximum quantity of Ik in the
transactions. Notice that the coverage factor is always 1 because in our case the 2-tuples linguistic representation
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Fig. 6. Two bad kinds of membership functions.
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Fig. 7. Diagram of the performance of the crossover operators based on environments.

ensures the coverage in all the domain, reducing the computation time. Thus, the suitability of the set of MFs in a
chromosome Cq is therefore defined as

suitability(Cq ) =
n∑

k=1

[overlap_factor(Cqk) + 1]

The suitability factor can reduce the occurrence of the two bad kinds of MFs shown in Fig. 6, where the first one is
too redundant, and the second one is too separate. The overlap factor in suitable(Cq ) is used for avoiding the first bad
case, and the 2-tuples linguistic representation prevents the second one.

3.4. Crossover operator

The crossover operator is based on the concept of neighbourhood. These kinds of operators present a good cooperation
when they are introduced within genetic models forcing the convergence by pressure on the offspring (as the case of
CHC). Particularly, we consider the Parent Centric BLX (PCBLX) operator [31], which is based on the BLX-�.
Fig. 7 shows the performance of these kinds of operators, which allow the offspring genes to be around the genes of
one parent or around a wide zone determined by both parent genes.

The PCBLX operator is described as follows. Let us assume that X = (x1 · · · xn) and Y = (y1 · · · yn), (xi , yi ∈
[ai , bi ] ⊂ �, i = 1 · · · n), are two real-coded chromosomes that are going to be crossed.We generate the two following
offspring:

• O1 = (o11 · · · o1n), where o1i is a randomly (uniformly) chosen number from the interval [l1i , u
1
i ], with l1i =

max{ai , xi − Ii · �}, u1i = min{bi , xi + Ii · �}, and Ii = |xi − yi |.
• O2 = (o21 · · · o2n), where o2i is a randomly (uniformly) chosen number from the interval [l2i , u

2
i ], with l2i =

max{ai , yi − Ii · �} and u2i = min{bi , yi + Ii · �}.

3.5. Restart approach

To get away from local optima, this algorithm uses a restart approach [12]. In this case, the best chromosome is
maintained and the remaining are generated at random within the corresponding variation intervals [−0.5, 0.5). It
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follows the principles of CHC [12], performing the restart procedure when a threshold value is reached or all the
individuals coexisting in the population are very similar.

4. Genetic-based mining process

According to the above description, the proposed algorithm for mining both MFs and fuzzy association rules is
described below.

Input: T quantitative transaction data, a set of n items, each with m predefined linguistic terms, a support threshold
�, a confidence threshold � and a population size N.

Output: A set of fuzzy association rules with its associated set of MFs.
Stage 1. Genetic learning of the MFs.
Step 1: Generate the initial population with N chromosomes.
Step 2: Evaluate the population. For each chromosome:

• For each transaction datum Di , i = l to T, and for each item I j , j=l to n, transfer the quantitative value v
(i)
j (Di =

(v(i)1 , . . . , v(i)n )) into a fuzzy set f (i)j represented as

f (i)j =
{

f (i)j1

R j1
+ · · · +

f (i)jm

R jm

}

using the corresponding MFs represented by the chromosome, where R jk is the k-th linguistic term of item I j , f
(i)
jk

is v
(i)
j ’s fuzzy membership value in region R jk , and m is the number of linguistic terms for I j .

• For each linguistic term R jk , calculate its count on the transactions as follows:

count jk =
T∑
i=1

f (i)jk

• For each R jk , 1 < j < n and 1 < k < m, check whether its count jk larger than or equal to the minimum support
threshold �. If R jk satisfies the above condition, put it in the set of large 1-itemsets (L1). That is:

L1 = {R jk |count jk ��, 1� j�n and 1�k�m}
• Set the fitness value of the chromosome as the sum of the fuzzy support (the count/T) of the linguistic terms in L1
divided by suitability(Cq ). That is:

fitness(Cq ) =
∑

x∈L1
fuzzy_support(x)

suitability(Cq )

Step 3: Initialize the threshold value L.
Step 4: Generate the next population:

• Shuffle the population.
• Select the parents two by two. Each pair is crossed if the hamming distance between the parent Gray codings divided
by 2 is over L.

• Evaluate the new individuals.
• Join the parents with their offspring and select the best N individuals to take part of the next population.

Step 5: If the best chromosome does not change or there are no new individuals in the population, L = L −
(L initial ∗ 0.1).

Step 6: If L < 0, restart the population.
Step 7: If the maximum number of evaluations is not reached, go to Step 4.
Stage 2. Basic method for mining fuzzy association rules.
Step 8: The set of the best MFs is then used to mine fuzzy association rules from the given quantitative database.

The fuzzy mining algorithm proposed in [20] is then adopted to achieve this purpose.
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Table 1
Results obtained in the genetic process

Sup Proposed approach Hong et al.’s approach Uniform fuzzy partition

Fit Fsup Suit #1I Fit Fsup Suit #1I Fit Fsup Suit #1I

With three linguistic terms
0.2 0.99 11.68 11.85 20 0.68 10.83 15.83 19 0.92 9.24 10.00 16
0.5 0.94 11.68 12.39 17 0.53 10.28 19.45 15 0.76 7.55 10.00 10
0.7 0.66 6.98 10.63 9 0.37 6.55 17.94 8 0.57 5.71 10.00 7
0.9 0.28 2.80 10.00 3 0.00 0.00 14.75 0 0.00 0.00 10.00 0

With five linguistic terms
0.2 0.95 10.46 10.99 22 0.53 10.22 19.27 22 0.94 9.43 10.00 21
0.5 0.77 9.92 12.92 15 0.38 7.95 20.63 12 0.46 4.57 10.00 7
0.7 0.61 7.69 12.57 10 0.20 3.96 19.54 5 0.24 2.36 10.00 3
0.9 0.10 0.92 10.00 1 0.06 0.90 15.01 1 0.00 0.00 10.00 0

5. Experimental results

To evaluate the usefulness of the proposed approach several experiments have been carried on a real-world database
with 63,756 transactions, FAM95. In these experiments, we compare the proposed approach with one uniform fuzzy
partition and with Hong et al.’s approach proposed in [19], which also performs a genetic learning of the MFs.

In the following subsections, first we describe the real-world database, then we show the results obtained from the
comparison with other approaches, later on we revise the fuzzy association rules via supports and confidences, and
finally we analyse the complexity and scalability of the proposed approach.

5.1. Problem description and experiments

The real-world database FAM95 contains data for the 63,756 families that were interviewed in the March 1995
Current Population Survey, conducted by the Bureau of the Census for the Bureau of Labor Statistics. C. Yarbrough
(Santa Rosa) and D. Freedman (Berkeley) transcribed the data from a public-use microdata tape supplied by the Bureau
of the Census and they are responsible for any errors of transcription or interpretation.

This database consists of 63,756 family records with 23 attributes each one. 2 To develop the different experiments,
we extracted the 10 quantitative attributes from them: age of head of the family, number of persons in the family,
number of children, hours head worked last week, head’s personal income, family income, taxable income for head,
federal tax for head, final sampling weight and March supplement weight for income and tax.

The initial linguistic partitions are composed of three and five linguistic terms with uniformly distributed triangular
MFs giving meaning to them. The following values have been considered for the parameters of each approach 3 :

• Genetic process: 50 individuals, 10,000 evaluations, 30 bits per gene for the Gray codification, 0.6 as crossover
probability (0.01 as mutation probability and 0.35 for the factor d in the max–min-arithmetical crossover for Hong
et al.’s approach).

• Method for mining fuzzy association rules: 0.8 for the confidence threshold.

5.2. Results and analysis

The results obtained in the genetic process by the analysed approaches are presented in Table 1, where Sup stands
for the minimum support, Fit for the fitness value, Fsup for the sum of the fuzzy support of the large 1-itemsets, Suit
for the suitability and #1I for the number of large 1-itemsets.

2 This data set was obtained from the UCLA Statistics Data Sets Archive website http://www.stat.ucla.edu/data/fpp.
3With these values we have tried to ease the comparisons selecting standard common parameters that work well in most cases instead of searching

very specific values for each approach.
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Analysing the results presented in Table 1, we can highlight the following conclusions:

• The best results are obtained by the proposed approach, presenting a good relationship between the size of the search
space and the results obtained, and getting a good trade-off between fuzzy support and suitability. Fig. 8 shows the
average fitness values of the chromosomes along with different numbers of evaluations of the proposed approach and
Hong et al.’s approach with three linguistic terms and 0.2 as minimum support.

• The proposed approach achieves larger or equal number of large 1-itemsets than the remaining approaches, which
makes easy to obtain larger number of rules. Fig. 9 shows the relationship between the number of large 1-itemsets
and the values for the minimum support with three linguistic terms.

• Obviously, the uniform fuzzy partition always obtains the best results for the suitability. However, the proposed
approach obtains values of suitability very near to the uniform partition and better Hong et al.’s approach for the
different values of minimum support, presenting the MFs obtained a good shape suitability. Furthermore, the MFs
obtained are interpretables in a high level since the original shapes of the initial MFs are maintained and the new
ones are directly related to the initial ones by means of the 2-tuples representation.

Table 2 presents the results obtained in the genetic process by Hong et al.’s approach with the 2-tuples linguistic
representation. Comparing the results obtained with the results presented in Table 1 we can highlight that the 2-tuples
linguistic representation allows us to highly improve the fitness values obtained by Hong et al.’s approach, achieving
suitability values similar to the proposed approach.
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Table 2
Results obtained in the genetic process

Hong et al.’s approach with the 2-tuples
Sup Fit Fsup Suit #1I

With three linguistic terms
0.2 0.97 10.90 11.18 20
0.5 0.89 11.36 12.64 18
0.7 0.59 6.20 10.33 7
0.9 0.26 2.79 10.52 3

With five linguistic terms
0.2 0.93 10.18 10.93 22
0.5 0.64 7.39 11.80 11
0.7 0.41 4.76 11.60 6
0.9 0.08 0.91 10.92 1

X1 X2 X3

X4 X5 X6

X7 X8 X9

X10

l1' = (l1,0.4) l2' = (l2,0.4) l3' = (l3,0.5) l1' = (l1,0.0) l2' = (l2,-0.2) l3' = (l3,0.0) l1' = (l1,-0.1) l2' = (l2,-0.2) l3' = (l3,0.2)

l1' = (l1,0.0) l2' = (l2,0.0) l3' = (l3,0.4) l1' = (l1,0.1) l2' = (l2,-0.2) l3' = (l3,0.1) l1' = (l1,0.1) l2' = (l2,-0.5) l3' = (l3,0.1)
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l1' = (l1,0.0) l2' = (l2,-0.2) l3' = (l3,0.2)

3l2l1l3l2l1l
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Fig. 10. MFs with/without lateral displacements (black/grey) and displacements of the MFs obtained by the proposed approach with three linguistic
terms.

Figs. 10 and 11 depict the final MFs obtained with three linguistic terms and 0.2 as minimum support by the
proposed approach and Hong et al.’s approach, respectively. Fig. 10 shows how small displacements in the MFs
lead to important improvements in the number of obtained large 1-itemsets. Furthermore, the MFs are more or
less well distributed, which makes easy to find their corresponding meanings for an expert. Fig. 11 shows how the
MFs obtained by Hong et al.’s approach also are more or less well distributed but they present a larger
overlap.

The number of fuzzy association rules obtained with three linguistic terms by the different approaches is pre-
sented in Figs. 12 and 13. Fig. 12 depicts the relationship between the number of fuzzy association rules and the
minimum support with 0.8 for the confidence threshold. In this figure we can highlight that the proposed approach
extracts the best number of fuzzy association rules in eight of the nine values for the minimum support. On the
other hand, Fig. 13 depicts the relationship between the number of fuzzy association rules and the confidence thresh-
old with 0.2 for the minimum support. Analysing this figure we can highlight that, although the derived number of
fuzzy association rules decreased along with the increase of the minimum confidence value, the proposed approach
extracts more than twice as fuzzy association rules as remaining approaches with all the values of the confidence
threshold.
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Fig. 11. MFs with/without displacements (black/grey) obtained by Hong et al.’s approach with three linguistic terms.
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Fig. 12. Relationship between the number of rules and the minimum support.
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Fig. 14. Relationship between the number of fuzzy association rules and the minimum support along with different confidence thresholds.
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Fig. 15. Relationship between the number of fuzzy association rules and the confidence threshold along with different minimum supports.

A crucial problem in association rule mining concerns the often huge number of frequent itemsets and interesting
rules that can be found in a database. In this paper, we have considered the method presented in [14] as a first approach
for mining fuzzy association rules. However, we could consider other approach which allows us to reduce the number
of rules presented to the user. For example, we could use a method for mining multi-level fuzzy association rules [30],
weighted association rules [33], etc.

5.3. Analysis of the fuzzy association rules via supports and confidences

In this section several experiments have been carried to analyse the fuzzy association rules obtained by the proposed
approach. Fig. 14 shows the relationship between the number of fuzzy association rules derived by the final MFs and
the minimum supports along with different minimum confidences. We can see that the number of rules decreases along
with the increase of the minimum support values. Besides, the curves have similar shapes and the differences among
them are small (mainly with minimum support values larger than 0.2). It means that the proposed method allows us to
obtain interesting fuzzy association rules since most of the fuzzy association rules can satisfy the confidence threshold
even with large values of minimum confidence.

Fig. 15 shows the relationship between the number of association rules derived by the final MFs and the con-
fidence threshold along with different minimum supports. We can see that the number of rules decreases slowly
with the increase of the confidence threshold values. Notice that this figure shows clearer how most of the fuzzy
association rules satisfy the confidence threshold when the confidence threshold value is increased. Besides, the
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curve with a large minimum support value are smoother than those with a small value, meaning that the confidence
threshold value has a larger effect on the number of fuzzy association rules when smaller minimum support values
are used.

Finally, an example of classic fuzzy association rulemined outwith one uniform fuzzy partition andwith the proposed
approach is:

Classic Fuzzy Association Rule:
If number of children is Low and
hours head worked last week is Low
then head’s personal income is Low
Factor of confidence 0.87

Rule with 2-Tuples Fuzzy Linguistic Representation:
If number of children is (Low, −0.16) and
hours head worked last week is (Low, −0.06)
then head’s personal income is (Low, 0.1)
Factor of confidence 0.99

This example shows how the proposed approach improves the confidence of the fuzzy association rules obtained with
one uniform fuzzy partition. Furthermore, the interpretability of the rules is maintained in a high level since the original
shapes of the initial MFs are not changed and the new ones are directly related to the initial ones by means of the
2-tuples linguistic representation.

5.4. Analysis of complexity and scalability

Several experiments have been carried to analyse the complexity and scalability of the proposed approach. All of
the experiments were performed using a Pentium Centrino, 2.4GHz CPU with 2Gb of memory and running Windows
XP. Figs. 16, 17 and 18 show the relationship between the runtime and the number of transactions, attributes and
linguistic terms, respectively. It can be easily seen from these figures that the reduction of the search space provided
by the 2-tuples linguistic representation allows the proposed approach to decrease its runtime regarding Hong et al.’s
approach as we increase the size of the problem. Moreover, the results plotted in these figures show that the proposed
approach scales quite linearly for the database used in the experiments.

On the other hand, we can see how the proposed approach expend a reasonable time for the database used. However,
an interesting further work could be the use of a parallel distributed implementation [32] or of a data reduction [4] to
improve the scalability of the proposed approach.
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Fig. 16. Relationship between the runtime and the number of transactions with 10 attributes and three linguistic terms.
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Fig. 17. Relationship between the runtime and the number of attributes with the 100% of transactions and three linguistic terms.
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Fig. 18. Relationship between the runtime and the number of linguistic terms with the 100% of transactions and 10 attributes.

6. Conclusions

In this paper, a new rule representation scheme by using the 2-tuples linguistic representation model has been
considered to extract bothMFs and fuzzy association rules from quantitative transactions. To do that, we have proposed
a genetic learning process for getting the MFs together with a basic method to mine fuzzy association rules. Here, we
present our conclusions and further considerations:

• The 2-tuples linguistic representation model allows an important reduction of the search space from the optimization
point of view.

• The coverage ranges of the final MFs contain all the items possible quantities in the transactions since the 2-tuples
linguistic representation maintains the original shapes of the MFs and restricts the lateral variation to a short interval,
ensuring overlapping between two adjacent MFs.

• The learning scheme together with the 2-tuples linguistic representation model and the used fitness function offers
a good mechanism to obtain MFs with a good trade-off between fuzzy supports and suitability, allowing us to mine
out a larger number of interesting fuzzy association rules.
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